27 research outputs found

    Evaluating survey methods for bat roost detection in ecological impact assessment

    Get PDF
    International audienceThe disturbance, damage and destruction of roosts are key drivers of bat population declines worldwide. In countries where bats are protected by law, bat roost surveys are often required to inform ecological impact assessments. Yet, evidence-based information on survey methodology to detect bat roosts is crucially lacking, and failing to detect a roost can lead to serious errors during decision-making processes. Here, we assess the efficacy of bat roost surveys in buildings as implemented in the UK. These consist of a daytime inspection of buildings, followed by a series of acoustic surveys at dusk/dawn if during the daytime inspection evidence of bats is found, or if the absence of bats cannot be verified. We reviewed 155 ecological consultants’ reports to (1) compare survey outcome between daytime inspection and acoustic surveys and (2) determine the minimum sampling effort required during acoustic surveys to be confident that no bats are roosting within a building. We focused on two genera of bats most frequently found in buildings in Europe – Pipistrellus (crevice roosting species with high-intensity echolocation calls that can be easily detected by ultrasound detectors) and Plecotus (species that roost in open spaces and which emit faint echolocation calls that are difficult to detect). Daytime inspections were efficient in detecting open-roosting species such as Plecotus species but were likely to miss the presence of crevice-dwelling ones (here Pipistrellus species) which may lead to erroneous conclusions if no acoustic surveys are subsequently prescribed to confirm their absence. A minimum of three and four acoustic surveys are required to be 95% confident that a building does not host a roost of Pipistrellus species and Plecotus species, respectively, thus exceeding current recommendations. Overall, we demonstrated that reports submitted as part of an ecological impact assessment provide suitable data to test and improve survey methods

    Satellite Observations of Stratospheric Hydrogen Flouride and Comparisons with SLIMCAT Calculations

    Get PDF
    The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Many of these fluorine-containing species deplete stratospheric ozone and are regulated by the Montreal Protocol. Once in the atmosphere they slowly degrade, ultimately leading to the formation of hydrogen fluoride (HF), the dominant reservoir of stratospheric fluorine due to its extreme stability. Monitoring the growth of stratospheric HF is therefore an important marker for the success of the Montreal Protocol. We report the comparison of global distributions and trends of HF measured in the Earth\u27s atmosphere by the satellite remote-sensing instruments ACE-FTS (Atmospheric Chemistry Experiment Fourier transform spectrometer), which has been recording atmospheric spectra since 2004, and HALOE (HALogen Occultation Experiment), which recorded atmospheric spectra between 1991 and 2005, with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the agreement between observation and model is good, although the ACE-FTS measurements are biased high by  ∼  10 % relative to HALOE. The observed global HF trends reveal a substantial slowing down in the rate of increase of HF since the 1990s: 4.97 ± 0.12 % year−1 (1991–1997; HALOE), 1.12 ± 0.08 % year−1 (1998–2005; HALOE), and 0.52 ± 0.03 % year−1 (2004–2012; ACE-FTS). In comparison, SLIMCAT calculates trends of 4.01, 1.10, and 0.48 % year−1, respectively, for the same periods; the agreement is very good for all but the earlier of the two HALOE periods. Furthermore, the observations reveal variations in the HF trends with latitude and altitude; for example, between 2004 and 2012 HF actually decreased in the Southern Hemisphere below  ∼  35 km. An additional SLIMCAT simulation with repeating meteorology for the year 2000 produces much cleaner trends in HF with minimal variations with latitude and altitude. Therefore, the variations with latitude and altitude in the observed HF trends are due to variability in stratospheric dynamics on the timescale of a few years. Overall, the agreement between observation and model points towards the ongoing success of the Montreal Protocol and the usefulness of HF as a metric for stratospheric fluorine

    Bat responses to changes in forest composition and prey abundance depend on landscape matrix and stand structure

    Get PDF
    Despite the key importance of the landscape matrix for bats, we still not fully understand how the effect of forest composition interacts at combined stand and landscape scales to shape bat communities. In addition, we lack detailed knowledge on the effects of local habitat structure on bat-prey relationships in forested landscapes. We tested the assumptions that (i) forest composition has interacting effects on bats between stand and landscape scales; and (ii) stand structure mediates prey abundance effects on bat activity. Our results indicated that in conifer-dominated landscapes (> 80% of coniferous forests) bat activity was higher in stands with a higher proportion of deciduous trees while bats were less active in stands with a higher proportion of deciduous trees in mixed forest landscapes (~ 50% of deciduous forests). Moth abundance was selected in the best models for six among nine bat species. The positive effect of moth abundance on Barbastella barbastellus was mediated by vegetation clutter, with dense understory cover likely reducing prey accessibility. Altogether, our findings deepen our understanding of the ecological processes affecting bats in forest landscapes and strengthen the need to consider both landscape context and trophic linkage when assessing the effects of stand-scale compositional and structural attributes on bats

    The location and vegetation physiognomy of ecological infrastructures determine bat activity in Mediterranean floodplain landscapes

    Get PDF
    Ecological infrastructures (EI), defined as natural or semi-natural structural elements, are important to support biodiversity and could play a crucial role in counteracting the well-known impacts of intensive agriculture. Yet, the importance of EI remains largely unexplored in Mediterranean agricultural landscapes and for species providing essential ecosystem services such as bats. Here, we evaluated the role of different EI types – in terms of location (riparian vs terrestrial) and vegetation physiognomy (woody vs non-woody) – in shaping bat guild activity in crop fields located in the floodplains of the Iberian Peninsula. We recorded 60,732 bat sequences in 96 crop fields and characterised 106 EI patches via an adaptation of the Biodiversity Potential Index (BPI). We found that the activity of mid-range echolocators (MRE) and long-range echolocators (LRE) was twofold higher when the nearest EI patch was riparian (i.e., contiguous to a watercourse) than when it was terrestrial. When assessing changes in bat activity in crop fields in relation to a gradient distance from EI types, our results revealed both distinct and similar effects of the location and vegetation physiognomy of the EI on bat guilds. For instance, while only the LRE guild positively responded to the proximity of woody EI, both MRE and LRE showed a marked increase of activity when increasing distances to non-woody EI, thus suggesting low bat activity levels near these features. Our habitat quality assessment also revealed that woody EI and riparian EI had higher biodiversity potential and related habitat quality, thus contributing to our understanding of bat responses to EI type in crop fields. As riparian areas are rarely targeted in biodiversity-friendly measures in farmland, we strongly recommend including riparian EI (especially the woody type) in conservation planning as they are crucial for both biodiversity conservation and ecosystem functioning

    Pathways towards a sustainable future envisioned by early-career conservation researchers

    Get PDF
    Scientists have warned decision-makers about the severe consequences of the global environmental crisis since the 1970s. Yet ecological degradation continues and little has been done to address climate change. We investigated early-career conservation researchers' (ECR) perspectives on, and prioritization of, actions furthering sustainability. We conducted a survey (n = 67) and an interactive workshop (n = 35) for ECR attendees of the 5th European Congress of Conservation Biology (2018). Building on these data and discussions, we identified ongoing and forthcoming advances in conservation science. These include increased transdisciplinarity, science communication, advocacy in conservation, and adoption of a transformation-oriented social–ecological systems approach to research. The respondents and participants had diverse perspectives on how to achieve sustainability. Reformist actions were emphasized as paving the way for more radical changes in the economic system and societal values linked to the environment and inequality. Our findings suggest that achieving sustainability requires a strategy that (1) incorporates the multiplicity of people's views, (2) places a greater value on nature, and (3) encourages systemic transformation across political, social, educational, and economic realms on multiple levels. We introduce a framework for ECRs to inspire their research and practice within conservation science to achieve real change in protecting biological diversity.Additional co-authors: Thijs Fijen, Heather Hemmingmoore, Sara Hocevar, Liam Kendall, Jussi Lampinen, Emma-Liina Marjakangas, Jake M. Martin, Rebekah A. Oomen, Hila Segre, William Sidemo-Holm, André P. Silva, Susanna Huneide Thorbjørnsen, Miquel Torrents-Ticó, Di Zhang, Jasmin Ziemack

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore